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1. Introduction 

Recent papers on degenerate Lagrangian systems [l-5] have dealt with the 
question of the equivalence between the Lagrangian and the Hamiltonian ap- 
proaches. In particular, in refs. [3,4] two results have been stressed: a definite 
relationship between Lagrangian and Hamiltonian constraints and a complete 
equivalence between the Lagrange and the Hamilton-Dirac equations. Never- 
theless, a relevant disparity between the two formulations arises if one looks at 
the dynamical symmetry transformations (DST), at the link between constants 
of the motion and symmetries and at the introduction of gauge symmetries 
(for the canonical formulation see refs. [ 6-91). 

In the present work it is underlined how a suitable definition of dynamical 
symmetry in the phase space T*Q must take into account or refuse the so- 
called “Dirac conjecture” (on this subject see refs. [lo-131 ) and we will 
comment on the consequences of both choices. Moreover, we will propose an 
intrinsic way of characterizing the DST within the Lagrangian formulation. To 
this purpose, as will be seen below, a suitable tool is a vector field satisfying 
the following properties: it must be tangent to the final constraint submanifold 
and it must map integral curves of the motion into equivalent integral curves. 
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This feature takes into account the fact that the motion takes place on the 
constraint submanifold and that, given the initial conditions, the equations of 
motion do not have a single solution in the general case. 

The connection with the Hamiltonian analysis can be seen by defining on 
TQ (the tangent space of the configuration space Q) a particular class of 
vector fields which exhibit prominent analogies with the Hamiltonian vector 
fields of X( T’Q). We will show that the acceptance of the Dirac conjecture 
guarantees a one-to-one correspondence between the DST of TQ and the ones 
of the phase space r*Q; viceversa, by refusing it, an entire class of DST of 
TQ has no correspondence in T*Q. 

In the present work emphasis will be placed on the DST belonging to 
the orthogonal complement of w, (the presymplectic 2-form defined on TQ 
through the Lagrangian). The reason for this choice lies in the close link 
between such vector fields and the first class constraints of T*Q, which play 
an essential role in building gauge transformations [ lo]. 

To avoid any pathologies and to get results which hold as global statements, 
we assume the standard hypotheses in the constraint theory (for instance, that 
the Legendre mapping is a submersion onto its image with connected fibers; 
that constraint submanifolds are closed and embedded in T*Q; that the rank 
of the Poisson brackets of constraints is constant). More specific hypotheses 
may occur and are specified in relation with particular results. 

2. Dynamical symmetries in phase space 

Let .C be the Lagrangian for a mechanical system with n degrees of freedom. 
As is well known [ lo], if the Lagrangian is degenerate and 

rank (CJ2,C/84 841 = n-m, (2.1) 

m primary Hamiltonian constraints exist in T*Q, and at first m undetermined 
multipliers appear in the Hamilton-Dirac equations. One has a submanifold 
MO c T’Q defined by the primary constraints 

4:’ = 0, p = l,m, (2.2) 

for which compatibility conditions with the equations of motion arise. There- 
fore, the conservation of the constraints must be imposed by requiring: 

(2.3) 

where j,, : MO L, T’Q is the identification mapping, H is such that FL* H = 
EL: (EL is the Lagrangian energy, FL the fibre derivative of the Lagrangian 
function) and finally, dfi E 7( T*Q) are the Lagrange multipliers. 
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Conditions (2.3 ) can give rise to: (i ) the determination of m - m I multipli- 
ers, if in-m i is the rank of the matrix ]{d:“, $:“}I; (ii) secondary constraints; 
(iii) identities on MO. 

Now, we will summarize the analysis of the constraints following the nota- 
tions used in ref. [ 3 1. 

It is known that one can construct a maximal set of ml (ml 5 m) constraints 
4 E’ which are first class on MO, i.e, 

The remaining independent m - ml constraints satisfy 

and are associated with determined multipliers so that, defining 

the following property holds true: 

i;;u{+;‘,H”)} = 0, p; = l,m-m,. 
0 

(2.4) 

(2.5) 

(2.7) 

In this way we see that secondary constraints are needed only if we apply 
conditions (2.3) to a function 4::’ and find that it is not satisfied. Otherwise, 
if the condition becomes an identity, we are in case (iii). However, for the 
sake of simplicity and since this does not affect calculations, we will call 
secondary constraints all the functions 

4,;; = {qf, H”‘}, p. = l,m,. (2.8) 

One must only keep in mind that the submanifold MI c MO, which is defined 
by (2.2) together with 

4;‘; = 0, PO = l,m1, (2.9) 

can possibly have dimensions greater than 2n - m - ml. We use a similar 
convention for higher order constraints as well. 

Then, having linearized possible quadratic constraints, the second step of the 
consistency analysis can start: one requires the conservation of the secondary 
constraints 

j:, W;b’>H”‘} + f”{q(,;,q$;‘}) = o, ,uo = l,m,. (2.10) 
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At this point, it is possible to choose m2 (m2 5 ml ) constraints 4:’ from 
among the functions 4::’ in such a way that they are first class also on MI: 

Again, the remaining ml - m2 constraints are such that 

(2.11) 

(2.12) 

where 4:: ) are secondary second class constraints. The remaining m2 secondary 

constraints can be written in such a way that their PBS with the functions 4:’ 
vanish on Mr. 

From (2.12) we see that (2.10) leads to a determination of ml - m2 
multipliers so that the Hamiltonian 

(2.13) 

satisfies 
j;, {~::‘,H(*)} = 0, p; = 1,mr - m2. (2.14) 

On the contrary, the funciions 

may be tertiary constraints. The procedure is clearly iterative from this point 
on: one defines M2 and studies on it the PBS between primary and tertiary 
constraints vyhich form the matrix I{&, ‘2’,&~~)}/, then one finds primary first 
class constraints r#$‘, with ~2 = l,m3 (m3 5 rnz), such that 

and new Lagrange multipliers, whose number is m2 - m3. 
The analysis is finished at this step only if the conservation of the constraints 

c,z~::’ (linearized if needed) is automatically satisfied on kfz: 

j;2{f(‘,H0’} = 0, p2 = I,m3, (2.17) 

where the final Hamiltonian Hc3) = Ht2) + I&#J~’ is first class on MI. 

If one writes the equations of motion by means of HC3), once the initial 
conditions on M2 are chosen the solutions lie on M2. We note that in this 
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algorithm the constraints which give rise to the following generation are not 
necessarily first class except for the 4::’ at the first step; however, it is possible 
to define secondary and tertiary constraints 

-(II 
dp2 = I4pe p2 = l,m3, 

-(2) -(I) dp2 = I+,,2 >fn, 112 = 1, m3, 

(2.18) 

which are first class on A42 for known involutive properties of the first class 
functions. However, such constraints may be quadratic. Indeed we want to 
underline that a subdivision in first and second class is possible only a 
posteriori, that is, on the final submanifold and once the first class Hamiltonian 
has been found. 

In this work we limit the study to the case in which no tertiary constraints 
appear. Therefore MI is the final submanifold, i.e., 

(2.20) 

where Ht2) is first class on MI ; the secondary first class constraints are 

-(I) 
q$,, = {f#$H(LI} = 0, p1 = l,m2. (2.21) 

In order to write the equations of motion on the final submanifold, the 
equation 

i,-j j:, D = jlf dH (2.22) I I 
must be solved for P E X (MI ); here Sz is the canonical symplectic two-form 
and the Hamiltonian H is defined except for primary constraints. Using XJ 
to indicate the Hamiltonian vector field belonging to X (r*Q) which is the 
solution for 

i,y,Q = df, f E F(T*Q), (2.23) 

we can take (see ref. [2] ) the most general solution for (2.22) and write a 
dynamics r E X(T*Q) such that r]hf, = j~,*r’, 

with LPI and <PI arbitrary functions of 3( T*Q). 
It has been observed [2,7] that, when complete equivalence between Hamil- 

tonian and Lagrangian descriptions of motion is required, solution (2.24) 
cannot be accepted: thus the multipliers Cfil should be equal to zero in (2.24) 
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whenever a vector field is sought which is also solution on Mc = FL( TQ). 
In fact, it can easily be demonstrated that only the field 

r = x)/z, + 1”’ x,10, (2.25) 
111 

is also a solution for the equation 

jio i,sZ = jz,o d H. (2.26) 

On the contrary, retaining (2.24) as the solution is the equivalent of extending 
the total Hamiltonian, including in it secondary first class constraints; this is 
the content of the Dirac conjecture. We are going to examine how the choice 
of the dynamics affects the definition of dynamical symmetry. 

Let us define the sets X (MI )I and X (MI ): 

X(Ml)* E {X E X(T*Q) \ j:,, i,J2 = 0}, (2.27) 

X(MI) = {X E X(T*Q) \Xl,,, = j,,.X’,X’ E I}. (2.28) 

The choice of dynamics (2.25) rather than (2.24) leads to consequences which 
are relevant from the dynamical symmetry point of view. To see this we can 
study the algebra of the set X (M1 )I = X ( MI ) n X (MI )I. It is evident that, - - 
given X E K (MI )I and a Hamiltonian vector field Y E X ( MI ), the vector 
field [X, Y ] belongs to X (MI )I. The vector fields X,,O, and X6;:, belong to 

PI 
X (MI )I because c#$’ and $$ ) are first class functions defining MI. 

Let us take a function G, which is (on Mi ) a constant of the motion of first 
class. We get XG E X (MI ) and 

jt, {G, H”‘} = 0, (2.29) 

j;, {G,$l’l = 0, PI = 1, m, (2.30) 

-11) 
j:, U%,,, 1 = 0, PI = 1, m. (2.31) 

All the Poisson brackets in (2.29), (2.30), (2.31) are combinations of first 
class constraints (primary and secondary) because of the involutive properties. 
Then, taking r E X (MI ) as in (2.25), we have 

(2.32) 
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Using (2.24) we obtain an analogous result: 

121 

(2.33) 
Using what has been mentioned above one sees immediately that in both cases 
[T,XG] belongs to X(MI )I. Indeed, these commutators yield the variation 
in dynamics r under infinitesimal canonical transformations generated by G. 
On the other hand, (2.24) and (2.25) do not represent a unique solution but 
rather an entire equivalence class of vector fields with two different equivalence 
relationships: in (2.24) 

whereas in (2.25) 
r, - r, w r, = r, + P x,,,, . 

PI 
(2.35) 

Then, a natural way of characterizing a dynamical symmetry is to require 

(2.36) 

If one accepts Dirac’s conjecture, using the equivalence relationship (2.34) 
together with (2.33) it can immediately be inferred that every first class 
constant of the motion generates a DST. 

On the other hand, the class of solutions (2.25) is not always invariant 
under transformations generated by first class constants of the motion because 
of (2.32) and (2.35). Such an invariance is satisfied using (2.25) as the 
dynamics if, and only if, a set of functions a ~1, bi,’ E F( T*Q) exists such that 

(2.37) 

In this case XG is a DST. Conditions (2.37) and (2.38), thought to be 
conditions for G, are equivalent to the one given in ref. [7]. 

Since it is known that gauge generators in T*Q must be constraints, the case 
in which G = $E’, so that (2.38) is automatically satisfied, is particularly 
interesting. 

One can note that a sufficient condition for (2.37) is in this case 

(2.39) 
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(that is the situation in which dim MI > 2n - m - ml ). Then we have 

-(I) 

FaC*cjc, = 0, 

which is an identity in 7’Q. Therefore, as will be demonstrated in section 4, 
not all primary Lagrangian constraints are independent and a symmetry for 
the Lagrangian function exists in TQ. 

3. Degeneracy of 0~: on the final constraint submanifold 

Analysis of gauge symmetries in TQ shows relevant differences from what 
was mentioned in the previous section. This fact is related to the particular 
geometrical properties of the fiber bundle TQ. It is known [ 141 that the vertical 
endomorphism S plays a central role in building the intrinsic structure of TQ. 
S is a (l-l ) tensor field whose Nijenhuis tensor is equal to zero. Seen as a 
mapping for vector fields, S is such that its kernel coincides with its image. 
Use will be made herein of the well-known Liouville vector field d E X( TQ) 
and of second order vector fields re E X (TQ), with the property S (rs) = A. 
Given a Lagrangian function C E F( TQ), the Lagrangian two-form is 

oL = -d(dCoS) (3.1) 

and the energy function is 
E, = L&-L. 

The Lagrange equations of motion take the form 
(3.2) 

L,(dC o S) = dL. (3.3) 

A comparison between the formulations in TQ and in T*Q would be very 
useful and is implemented by the first order differential operator K [ 3 ] and 
by the mapping R(L), : TF~(~)T*Q - TwTQ (w being a vector of TQ), 
defined in ref. [ 151. The action of the operator K is given by 

KU-1 = F~*{f,H} + v”FL*{f,+;]}, f E F(T*Q), (3.4) 

with v@ known functions of F( TQ). The operator takes a function in T*Q 
and gives its time derivate as a function in TQ. 

With regard to the mapping R(L) w, it must be pointed out that no cor- 
responding global mapping exists from X (T*Q) to X (TQ). Using R(L),, 
the most we can do is take a field of X (T* Q) restricted to Ma in order to 
construct a field of X( TQ). Nevertheless, this being implied, we will write 
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R (L) instead of R(L), following the notation of ref. [ 15 1. Use will be made 
of the property 

R(L)X#to) = S(Z,) = Ki E V(kerw,), p = l,m, (3.5) )1 

where V(kero,) = kero, rl V( 7’Q) with 

kerw, = {X E X(TQ) \ i,yw = 0}, (3.6) 

v(rQ)-{XEX(TQ)\S(X)=O}. (3.7) 

The local expression of the vector fields Ki is given in appendix A. The vector 
fields Z, are defined modulo arbitrary vertical fields. It has been demonstrated 
[4] that, if 4 is any Hamiltonian constraint, all Lagrangian constraints can be 
obtained by posing 

K(4) = 0 (3.8) 

In the present case the following relations hold: 

(I) 

X 
fl0 

= K(4;L PO = l,m1, (3.9) 

The functions x :A’ give the so-called dynamical constraints. These define the 
submanifold Si, which is minimal in order to write the equations of motion. 
On S; at least one solution r E X (TQ) exists for the equation 

i;, h-0, = jI,dE. (3.11) 
I I 

By requiring the second order character for r, the so-called SODE constraints 
arise, corresponding to the functions XL:’ . In this manner the primary con- 
straint submanifold Si is obtained. 

By requiring the tangency of r to St, the secondary constraints x:f’ arise. 
The following relation holds: 

(3.12) 

Since there are no tertiary Hamiltonian constraints, we have j;, K (4::’ ) = 0 
for ~1 = 1, m2. The constraints x:f’ , together with all the others, define the 
final submanifold S2 . Only the dynamical constraints are FC-projectable [ 31. 

In order to write dynamical symmetries in TQ the set X (S2 )I = X (S2 )l n 
X(S2) must be studied. This set is defined similarly to K(Mi )I in the 



130 C. Ferrario and A. Passerini / Dynamical s.vttmetries in constrained system 

previous section. The elements of X (Sl)’ can be correlated to those of 
X (MI )* although not one to one. To do so we begin by looking for an FC- 
projectable basis for the set kerw, n X(&). In fact, this set is contained in 
X (SZ)~ because of the relation 

kerw, = X(rQ)’ g X(&)‘. (3.13) 

An FL-projectable basis for kero, exists and may be made of the ?n vector 
fields K;, defined in (3.5), together whith the ml vector fields K,, E X( 7’Q) 
such that 

FC,Kpo = Qo), ,uo = l,ml. (3.14) 
PO 

Condition (3.14) does not characterize the fields K,, in an unambiguous 
manner. In fact, since ker FC, = V (ker oL ), we can add any element of 
V(kero,c) to K,,. A particular choice of K,, can be made so that 

LKp VP = 0, p = 1,m; /.&J = l,rnl. (3.15) 
0 

The local expression of this basis is given in appendix A. 
The tangency of V (ker WL ) to the final constraint submanifold was checked 

in ref. [ 3 1. The result is that all the vector fields of V (ker 0~ ) are tangent to 
Si, defined by 

LKp E, = 0, po = l,m,. (3.16) 
0 

Furthermore, only the fields Kfl: = S(K,,, ) are tangent to St and only the 
fields Kl, with ~1 = 1,1122 are tangent to S2. With regard to the other fields 
in our basis, the condition of tangency to S; is 

Thus, in a manner similar to what happens in T*Q, the vector fields K,, 
are split into KP; (& = 1, m i - In2 ) and KP, (,u, = 1, m2), the latter being 
tangent to S;. In fact, 

FLAP, = x,,,,, > PI = l,m2, (3.18) 
5 

and X4;;, is tangent to MI = FC (S{ ). 
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It is always possible to construct m2 vector fields rp, which are tangent to 
S2. The conditions are 

ji2La (& -FL*ib) = 0, & = l,m-ml, (3.19) 
PI 

jz2 LB, (v“‘l - FL*LP’ ) = 0, pi = 1, ml - m2. (3.20) 

Here the expression ;-or non-FC-projectable constraints given in ref. [4] has 
been used. The geometrical idea is to add a linear combination of non-tangent 
vector fields belonging to V (ker we) to every K,, which is not tangent to &, 
thus obtaining a tangent vector field still in keroL while being F&projectable. 
Let 

be the linear combination which must be added to K,, . Using (3.15) and the 
Prow-Q 

L,,v” = Sfi”, p,u = l,m, 

from (3.19) and (3.20) weiet 

(3.22) 

(3.23) 

(3.24) 

(We recall that A”; and 1”; are known functions of 3(T*Q), determined on 
Ma and on MI, respectively, so the PB can be unambiguously calculated.) In 
this way, the following have been proved: 

Proposition 3.1. An FL-projectable basis for kero, f~ X (&) is made of the 
vector fields 

Kz, = R(L)X4(o~, PI = l,m2, 
81 

and of the vector fields r,,, with ~1 = 1, m2, determined by the condition 

together with conditions 
L- V”I = 0, K PI 

L, 
PI 

v”: = FL*{& $I’}, L, 
PI 

v”: = FL*{~“‘,$:q’}, 

where vI = l,m2; ~6 = 1,m - ml; Y; = l,mr - rnz. 
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The relation between ??I(, and KP, is: 

(3.25) 

However, there are other independent vector fields in X (ST)’ apart from 
those defined in proposition 3.1. If r E X(&) is the secondorder dynamics 
tangent to & we have 

jz2 ‘rr,q, ] 0, = it (irLr,, 0, - Lr,, ip,) = -dj,’ L, E, = 0. (3.26) 
I I ? ,, 

Therefore the vector field [r, K,,, ] also belongs to X (& )I. Using the property 
[41 

we get 

where the vector field yjl,, obviously belonging to X (ST )*, is associated with A 
the field Y,, such that 

FC*Y,, = x7101, PI = l,m2, (3.29) 
PI 

as 7ZP, was associated with K/,, . In general, yP, does not belong to keroL, 
likewise XT(o, does not belong to X (Ma )l. Calculation of the Lie bracket 

(3.28) is gizen in appendix B as is the local expression for TP,. 
All the results concerning K,,, and Y,,, can be generalized. To do so one 

can associate a particular vector field X(G) E X( TQ) with any function 
G E .F( T’Q) for which 

jl,, {G,$r’} = 0, P = 1,~ (3.30) 

holds true. The field X,,, must satisfy the following properties: 

R(L)& = ax,,,), (3.31) 

Lq,,,qyl = 0, P = l,m, (3.32) 

(3.33) 

(3.34) 
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(3.32) is the condition for X(o) to be FL-projectable; from (3.33) it follows 
that 

j:, ixcG, w = jz, dFCG, (3.35) 

and (3.34) is useful in the construction df the vector field 

x,,, = X,,, + FC*{I”,G}K;; + FL*{l”‘,G}K;, (3.36) 
I 

which is tangent to S,. A local expression of X,,, can be found in appendix A. 
If G is a first class constant of the motion on M,, using (3.4) and (3.27) 

one obtains 
ji, L, (F.C*G) = 0, (3.37) 

I 
whereas, taking into account that j$,Lro = 0, using (3.35) and (3.37) one I 
gets 

j:, jlf,~,,, pL = 0. (3.38) 

Finally, the generalization of expression (3.28) can be obtained 

-II) 
The results for K,,, and Y,, can be derived taking G equal to “1’ and $,, , 

I 
respectively. 

4. Dynamical symmetries in TQ 

If the Lagrangian function is degenerate, when we write the equation for 
r E X(W), 

irco, = dE,, (4.1) 
we must add to it the so-called SODE condition, S(T) = A, in order to obtain 
Lagrange equations. Therefore, any infinitesimal transformation preserving the 
structure of the tangent bundle must at least be Newtonoid with respect to r. 
A vector field X (r ) E X (TQ) is said to be Newtonoid for r if 

XV) = x + s[r,x], x E X(TQ). (4.2) 

As the property 
s[x(r),r] = 0 (4.3) 

holds, the new dynamics will also be a second order vector field. Therefore a 
DST must have the form (4.2). 
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Now, let us return to the equation for r E X (&) (only the final submanifold 
is relevant from the physical point of view): 

j,* i,so, = j12 dE,. (4.4) 

In TQ, as in T’Q, the solution of (4.4) is not unique but rather is an 
equivalence class of vector fields, whose quotient is made by imposing that 
the elements of the set X(&)* n V( TQ) are equivalent to zero. As a matter 
of fact, since r must be a second order vector field, we can add to it only 
vertical fields belonging to X (ST )I. A If, for instance, w, is of constant rank, 
that is 

X(&)‘n V(TQ) = V(kero,), (4.5) 
the equivalent solutions of (4.4) are characterized in the following way: 

fi Nr2ul-2 =r, +?f1Kii, (4.6) 

with arbitrary functions VP’. 
Thus, a Lagrangian DST must satisfy 

j;2 i[x(r),rp, = 0. (4.7) 

To this purpose we give the following 

Definition 4.1. A Newtonoid vector field X (r ) is a Lagrungian DST if and 
only if 

x(r) E ws2), (4.8) 

w-m E xbs,t (4.9) 

A recurring problem in Lagrangian analysis is how to check the tangency of 
vector fields. Addressing this point we give the following results (see appendix 
C for proof). 

Lemma 4.2. Let f be a first class function on MI. Then R ( L)XJ belongs to 
X(&) if and only if 

j~2&,,(r)f’~*f = 0, P = 1, m (4.10) 

j;2LY,o(r#'~*f = 0, PO = Lw, (4.11) 

V vectorfields 2, s.t. S(Z,) = Ki and VY,, s.t. S(Y,,) = R(L)X6(~,. 
80 
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If the Lagrangian is not degenerate it is well known that a dynamical 
symmetry corresponds to each constant of the motion. In fact, when o, is 
a symplectic form, it is always possible, given G, E F( TQ), to solve the 
equation for X E X ( TQ), 

ixw, = dG,. (4.12) 
Then, if G, is a constant of the motion one gets 

I ,=,, ,.,w, = Lri,o, = dL,G, = 0, (4.13) 

that is to say 
[X,Tl = 0, (4.14) 

which is taken as a definition of dynamical symmetry. As a consequence of 
(4.14), every dynamical symmetry is a Newtonoid vector field. 

In order to generalize this result to degenerate systems, let us recall that in 
such a case a constant of the motion satisfies 

j;2 L, G, = 0, (4.15) 

where r is the second order dynamics tangent to &. As r is determined 
except for arbitrary elements of X (Sz )I n V ( TQ), from (4.15) it can be 
inferred that a constant of the motion E 3( T*Q) exists such that 

jz2 (G, - FC*G) = 0. (4.16) 

Since one can always choose G (see ref. [ 21) so as to be first class on Mt , it 
is always possible (see ref. [ 161) to solve the equation for X E X(TQ), 

from which it immediately follows that, if X E X (Sz ), 

(4.17) 

(4.18) 

However, in general the field [X, r ] E X (5’2) is not a vertical field. So we 
need to impose that a Newtonoid solution of (4.17) exists. 

Since it is always possible, as shown in ref. [ 161, to find such a solution 
among the fields of X (&), one can always associate a dynamical symmetry 
with each Lagrangian constant of the motion. As we have seen in section 2, the 
same result holds in T*Q with the corresponding first class constants of the 
motion, only if we accept Dirac’s conjecture. Otherwise, one gets conditions 
(2.37), (2.38) and a constant of the motion does not necessarily generate 
a DST. So, if one follows the formulation given in ref. [7] the one-to-one 
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correspondence between Hamiltonian and Lagrangian DST seems to be broken 
because each first class constant of the motion G is such that FL’G, regarded 
as a constant of the motion in TQ, is associated with a Lagrangian symmetry. 

However, one can find a one-to-one connection between DST defined as 
in ref. [7] and a particular kind of dynamical symmetry vector fields of 
X( i”Q). In what follows it will be demonstrated that imposing the FC- 
projectability of the first n components of a Lagrangian DST, one achieves 
transformations whose push-forward in the phase space is an infinitesimal 
canonical transformation with a generator G satisfying (2.37), (2.38). 

In order to do this, an FC-projectable solution of (4.17) is the field x,,, E 
X (Sz ) defined in section 3, 

jiziY w, = jkdG,. (4.19) 
(Gl 

For what has been mentioned above, if the Newtonoid vector field 

x,,, u- 1 = x,,, + s [C q,, 1 

DST. is a solution of (4.17) and is tangent to Sz, then it is a Lagrangian 
Because of (4.19), the following proposition evidently holds true: 

Proposition 4.3. A necessary and sufficient condition for 

(4.20) 

.C2 i.yto) u-j 0, = j:2dG,, (4.21) 

X,,) u-1 E X(S2), (4.22) 
is that 

w,q,, 1 E a5-2P. (4.23) 

One can derive an equivalent condition which clarifies the link with dynam- 
ical symmetries of T* Q. Using the property (see ref. [ 151) 

R(L)FC,X = S(X), (4.24) 

where X E X (TQ) is an FC-projectable vector field, along with the property 
(3.39), one has 

S[r,X,,,lIs, = ~(~)Jf~G,H~~~~~s2 + (j,‘u”~ )R(~)~Ic,6;~~jls2. (4.25) 
2 I 

From this expression it is easy to see that (2.37), (2.38) imply (4.23) and 
so, for every DST in T*Q, a Lagrangian DST exists. 

Explicitly ruling out the possibility that the dimensions of Q are reduced by 
the equations of motion, we can demonstrate the following 
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Proposition 4.4. The vector field S [r, x,,, ] belongs to X (Sl )I if and only if 

R(LV$G,Hu)l E WWL, (4.26) 

R(L)xjc,4;), E X(Sk 111 = l,m2. (4.27) 
I 

Proof: The sufficiency of conditions (4.26) and (4.27) is evident for (4.25). 
Let us suppose, conversely, that (4.23) holds true. We have 

G2 h-,x,,, l W, = 0. (4.28) 

Taking into account the property [ 141 

~,o,~, = - (ixw, 1 0 S, (4.29) 

we can write 

i R(+q = -(dFC*f 10 S, Vf E S(T*Q). (4.30) 

Therefore, from (4.25) and (4.28) one gets 

jJ2 ((dFC*{G,H”)}) OS + IA (dF,C*{G,$I)}) OS) = o. (4.31) 

This means that VV E F’( TQ), 

jJ2 (L,,(FC*{G,H’*‘}) + vplL,,(FfZ*{G,$E’})) = 0. (4.32) 

Differentiating (4.32) with respect to the field Ki,, which is tangent to &, 
and using (3.22) one obtains for pI = 1, m2, 

j:, L& .,,, 
PI 

(F,C*{G,d2)}) +V’I (L,,,, ,,,, W*IW$)H 
81 

+ L,,(FL*{G,4;‘}))) = 0. (4.33) 

Since (4.32) holds true and [K;,, V] is vertical, it can be inferred that 

j~2L,,(FIC’{G,$~‘}) = 0, WE V(TQ); ~1 = l,m2, (4.34) 

and, as a consequence, 

j~,L,,(FL*{G,d2’}) = 0, VP’ E v(TQ). (4.35) 
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Using (4.30) once more one immediately sees that 

w)X{G,Hu)) E X(S2k (4.36) 

R(L)X{&$;,) E x(s2)*, PI = l,m2. 
I 

(4.37) 

It remains to be proved that these vector fields are also tangent to S2. Since 
by hypothesis 

j;, F,C*{ G, H”‘} = 0, (4.38) 

j;2FL*{G,+;‘} = 0, pI = l,mz, (4.39) 

properties (4.34) and (4.35) imply that VX E X(rQ), 

j~2L,,(F~*{G,H’*1}) = 0, (4.40) 

jJ2L,’ (FL*{G,4:‘}) = 0, VV E V(TQ); PI = l,mz. (4.41) 

Keeping this result in mind, lemma 4.2 can be used to prove that the vector 
fields of conditions (4.26), (4.27) are tangent to S2. 0 

Now conditions (4.26) and (4.27) are completely equivalent to conditions 
(2.37) and (2.38). Finally, one can take a look into the particular case 
examined at the end of section 2: when the dynamical constraint F,C*$:) is 
an identity in TQ, the Lagrangian DST corresponding to X 0) is the field 

4, 
KP, (r). Moreover, one immediately obtains a symmetry for the Lagrangian. 
In fact, from the expression for primary Lagrangian constraints shown in ref. 
[ 171, it follows that 

Such symmetries are always present in degenerate systems free of constraints, 
as the free relativistic particle and the electron-monopole system. 

5. Examples 

Example 1. Let us consider the Lagrangian function 

c = $(4,4, + 4242 j2 + 2q2i3 (9,4, + qj2) 

+ 2&i: + 4,4, + c&i2 + c&i, + 4,i4. 

If we think that the chart in which we are working is such that q, is different 
from 0, then the Hessian matrix (2.1) has constant rank equal to 1. Such a 
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prescription, as will be seen, is consistent with the solutions of the equations 
of motion. Indeed, we limit the study to the sector in which q2 is different 
from zero. 

The Hamiltonian analysis of the constraints starts from the function 

2 H=p&L=L b-1 . ( ) 2 41 
It is easy to verify that the primary constraints 

q(O) = 2(Pz--qz)- oJ3-q3), 4:“’ = 42PI -P26?1, 4:“’ =P4-41 

(only 4:” being first class) are independent. Moreover the multipliers j12 = 
(41 -PI m:92, 23 = 0 are determined on MO so that, recalling (2.8), we can 
write 

As this constraint is quadratic, the conditions (2.37) and (2.38) on ~$1” 
are satisfied. On the other hand, if one looks for a non-quadratic first class 
constraint, we note that it is enough to take 4:” = p2 - 92. By imposing the 
stability condition to 4:” there are no further constraints. 

On TQ, on the other hand, a basis for kero, is 

K, = 2&-+$[q,i, +q&i, +24,)1-& 
2 3 * 4 

--&pi, -I- a?,(4 + 2i,)I-$. 
I 

There are two SODE constraints xi = i,, xi = 4,, and only one dynamical 
constraint x = -L, E,, 4 

x = +,4, + q&i2 + 24,)12 = f’~‘?:‘). 
7 

A second order solution of the dynamical equation on S1 is 
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with arbitrary q,,q2,q, E 3(TQ). 
By linearizing x and imposing the tangency of r to Si, we get 9, + 2~, = 0, 

‘I, = 0, whereas there are no secondary Lagrangian constraints. So, the final 
dynamics r E X (Si ) is 

with an arbitrary function q multiplying a vector field belonging to I’ (ker WC ) n 
X(St ). We note that ql is constant; therefore, if it is different from zero for 
t = 0, then it never vanishes. Finally, we find that & E X (St ) and the vector 
field & (r ) is such that 

Indeed we obtain 

The field & (r ) is a Lagrangian DST and its first four components are FL- 
projectable; consequently, as we have just seen, the constraint $i”’ is the 
generator of a Hamiltonian DST, defined as in ref. [ 41. 

Example 2. As in ref. [ 181 we consider 

c = ;[4: + &j* - &I21 - V(a)* 

In this case a basis for kero, is given by 

K, = alag, +alai2; K? = a/a&. 

There is only a dynamical constraint x = q: (q2 - q3), to which the second 
order dynamics 

r = ii& + q*(i2-qj)2-dV d , 1 da aql 

+ 43 - 942 - 93)41 1 L+$ ai2 ai 
is automatically tangent; q represents the residual arbitrariness. We get a basis 
for the orthogonal complement X (Si )I by adding to K, and K, the vector 
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field Y = d/aqz. The condition of proposition 4.4 holds: S [r, Y ] = 0. It is 
easy to see that 

Y(f) E X(S, 1, [YU’),fl E V(kerw,) nx(S,). 

We would like to underline that for this example the condition given in ref. 
[4] holds: K ($:l’, is strongly equal to zero on S,, where 3::’ is in our case 
equal to ~2. This condition ensures the existence of a Hamiltonian DST in the 
sense specified in ref. [4]. 

Example 3. As found in ref. [ 171, the Lagrangian 

13 = T (4: + q:ii + qf$ sin’ 92) 

+ n 2; + (cosq?.- 1)4x + 44 
( . g 1 slnc::q2~2) ’ 

with g(q2,a) = if(cosq2 + 1) - q41 2 ‘I2 describes the motion of a non- 
relativistic charged particle in the field of a magnetic monopole. As in the 
case of the relativistic free particle, here Lagrangian constraints do not exist 
and the Newtonoid symmetry is 

with q being arbitrary. 

6. Conclusions 

In the present work an intrinsic definition has been given for DST in TQ. 
To do so, specific vector fields of X (TQ) have been identified, which play a 
role analogous to that of Hamiltonian fields; indeed, particular care has been 
devoted to the problem of their tangency to the final constraint submanifold. 

A proof has been given of the fact that a DST on 7’Q corresponds to 
every DST in T'Q. The converse is not true if one refuses Dirac’s conjecture, 
because in such a case there are first class constants of motion in T*Q which 
do not generate any DST. 
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Appendix A. Local expressions for AT,, and X(G) 

The local expression of o, is 

w, = yj dq’ A dqj + ;A,, dq’ A dqj (A.1) 

with 
A,, = C-E 

a$aqj aqiaii’ 
i,j = 1,n. 

While the vector fields which satisfy (3.5) must evidently have the following 
form 

p = l,m, (A.21 

the fields K,,, E kerw,, which we write as 

K,,, = I?& + b’-+., PO = 1,1?71, 

must satisfy the condition 

M(,bj + A,,& = 0, i = 1,n. 

Consequently, if one tries to obtain 

FC,Kpo = X6(o), PO = l,ml, 
QO 

the n equations for bj remain to be solved: 

a&F: 
Wijbj = AjiFC*- 

apj ’ 
(A.31 

In order to express the bj components use will be made of the important 
completeness relationship (see ref. [ 16 ] ): 

Wij FC’- 
( 

a2H 
&@pk 

+ .“FC*z) 
1 

= Si - zFC*g, j,k = l,n, 

from which, considering the Lagrangian identity 

(A.41 

(A.51 
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and the fact that 
F&“Cg so, #u= l,???, 

we get 

143 

for which we obtain 

Since the matrix W is singular we can add the corresponding components 
of any null eigenvector of W to the bk; such an arbitrariness is taken into 
account by finally writing 

(A.6 1 

with UP arbitrary functions. Differentiating (A.5) with respect to K,, and 
comparing the result with b’, we obtain 

LKpo VP = arc, p = l,m. (A.7) 

Therefore (3.15 ) is equivalent to the choice aJ’ = 0 to remove all arbitrariness. 
Indeed, let G E F( FQ) be such that j;,, {G, 4:“) = 0 , with Jo = 1, m. In 
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the same way adopted to derive (A.6) one can easily find that 

.aG a X,,, = FC -7 
api w 

+ bL*{g,G} +upFL*{$,G} +FC.(G.~Q~M~~] -j%, 

(‘4.8) 

where the v)~‘s (p = n - m + 1, n ) make up a set of primary constraints which 
are equivalent to the 4:‘)‘s (p = 1, m), and satisfy (see ref. [ 191) 

,a = I,m, 

and where 

d2H Mik = FL‘- -I- d'FC* 
a=$::' 

OiOk apiapk ’ 
i,k = 1,n. 

Appendix B. How to obtain a Lie bracket [r, X~Q] 

Here we wish to calculate the local expression of 

(A.9) 

03.1) 

Here no detailed form of r will be used but rather the action of the operator 
K, eq. (3.4), and property (3.27) will be employed. 

Thus in a few steps we obtain the first components of the field resticted to 
s2: 

Let us consider the previously quoted constraint expression 

jz2 (v”: - F,C*A"i) = 0, vi = 1,m - ml, 03.2) 

j12 (v”l - FC*A’:) = 0, v; = I, m - m2. U3.3) 
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By splitting the VP’S and considering H(*) as defined in the first section, we 
have 

a’ T Fc*&$;‘,HI*‘} + v”lFC*g,{qf’,q5~‘}, i = 1,n. U3.4) 
I I 

Again, with the aid of (3.27) and, moreover, taking into account the Jacobi 
identity, we can write 

- L% VpFC 
* { ~,I$;‘} - (L5, L,u’)FC*g 

- ‘L,,, VJ’ &FL 
* ati:“’ - - 21” (Lrp, v”)FC* 

dPi 
i = 1,n. 

Again, splitting the functions v p, taking into account (B.2) and recalling 
proposition 3.1, with the same easy but boring calculations we finally obtain, 
for i = 1,n: 

(B.5) 

Now, analyzing (B.4) and (B.5) some previously defined vector fields can be 
recognized. In fact, the field whose first n components are 
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belongs to kero, n X(&). This can be seen by comparing (3.36) and (A.6) 
with (B.5), since the function {$,/;‘I’, ~~~‘} is again a primary first class 
constraint on MI . Moreover, a linear combination of fields belonging to 
V(kerw, ) n X(&) is present. Thus we are left with a vector field which is 
indicated by y,(, . Its local expression is consequently 

-(I) 
%I f3 yfl, = FL’-? 
dPi 891 

+ [,,*{~,,,}+~~.,,.{~,~::}I $ 

(II aq$ -(II a&l 
+ FL* {f’, i$, > F + {A”’ , &, 1 T$ 03.6) 

I I 
I 

$7 

where 3:: ) = {f$;ly’, II(“). 

Appendix C. Proof of lemma 4.2 

Taking the functions K (4:“’ ) and K <qbii’ ) as Lagrangian constraints, let 
calculate 

us 
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a&O’ a = FL*{$;‘,f} + FL*$@FL*f +K 
1 

Property (3.27) was used in the last passage. In a similar manner an 
analogous result can be obtained, 

If f is a first class function, we have 

By requiring th; tangency of the vertical field, lemma 4.2 follows. 
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